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Human-specific ARHGAP11B increases size and
folding of primate neocortex in the fetal marmoset
Michael Heide1*, Christiane Haffner1, Ayako Murayama2,3, Yoko Kurotaki4, Haruka Shinohara4,
Hideyuki Okano2,3, Erika Sasaki4, Wieland B. Huttner1*

The neocortex has expanded during mammalian evolution. Overexpression studies in developing mouse
and ferret neocortex have implicated the human-specific gene ARHGAP11B in neocortical expansion, but
the relevance for primate evolution has been unclear. Here, we provide functional evidence that
ARHGAP11B causes expansion of the primate neocortex. ARHGAP11B expressed in fetal neocortex of the
common marmoset under control of the gene’s own (human) promoter increased the numbers of
basal radial glia progenitors in the marmoset outer subventricular zone, increased the numbers of upper-
layer neurons, enlarged the neocortex, and induced its folding. Thus, the human-specific ARHGAP11B
drives changes in development in the nonhuman primate marmoset that reflect the changes in evolution
that characterize human neocortical development.

E
volutionary expansion of the humanneo-
cortex is linked to our cognitive abilities
(1–6). The human-specific geneARHGAP11B
(7, 8) is implicated in this neocortical ex-
pansion because it is expressed in the

human progenitor cells giving rise to neo-
cortical neurons, and when overexpressed in
developing mouse and ferret neocortex, two
evolutionarily distant mammals, can induce
features associated with neocortical expansion
(9, 10). ARHGAP11B arose ≈5 million years ago
by partial duplication of ubiquitousARHGAP11A,
which encodes a Rho-GAP exhibiting nuclear
localization (7–9, 11). However, because of a
point mutation that presumably occurred after
the partial gene duplication event and leads to
a human-specific change in protein sequence,
ARHGAP11B lacks Rho-GAP activity in vivo
and is localized in mitochondria. This pro-
motes the proliferation of basal progenitors,
which are implicated in neocortical expan-
sion through glutaminolysis (11, 12). Here, we
tested ARHGAP11B’s relevance for neocor-
tical expansion in a nonhuman primate by
expressing ARHGAP11B under the control of
its own (human) promoter in transgenic fetal
marmosets.
To express human-specificARHGAP11B (7, 8)

(fig. S1A) in the common marmoset, we con-
structed a lentiviral vector. In this functionally
verified vector (fig. S1, B and C), an ≈2.7-kb human
genomic segment containing the ARHGAP11B
promoter drives expression of an enhanced
green fluorescent protein (EGFP) reporter,
followed by the complete ARHGAP11B protein-

coding sequence. The two proteins become
separate polypeptides after translation be-
cause of the presence of a T2A self-cleaving
sequence (fig. S1B). This expression vector was
used to generate pregnant marmosets carry-
ing ARHGAP11B-transgenic fetuses by follow-
ing a previously established protocol (13). This
protocol involves microinjection into fertilized
marmoset oocytes and transfer of in vitro–

developed embryos into foster mothers 3 to
5 days after ovulation (with the day of transfer
being defined as day 0 of pregnancy; fig. S1D
and table S1).
We confined our analyses to marmoset fe-

tuses because we anticipated that expression
of this human-specific gene would affect neo-
cortex development in this animal. In light of
potential unforeseeable consequences with re-
gard to postnatal brain function, we consid-
ered it a prerequisite—and mandatory from
an ethical point of view—to first determine the
effects ofARHGAP11B expression on the devel-
opment of fetal marmoset neocortex. To this
end, we collected fetuses after Caesarian section
at day 101 of the ≈150-day gestation (fig. S1D),
a stage when neocortical development shows
both progenitor cell division and production
of neurons (destinedmostly to the upper layers)
and which corresponds to fetal human neocor-
tical development at≈16weeks after conception.
Of the sevenEGFP- plusARHGAP11B-transgenic
marmoset fetuses obtained (table S1), five
expressed both EGFP and ARHGAP11B in fe-
tal neocortex, whereas two expressed neither
(Fig. 1). In the five transgenic fetuses exhibiting
EGFP and ARHGAP11B expression in neo-
cortex, we found three or four lentivirus inte-
gration events at random genomic positions
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Fig. 1. ARHGAP11B and EGFP ex-
pression in ARHGAP11B-transgenic
marmoset 101-day fetuses.
Shown are the results of genomic
PCR for EGFP and ARHGAP11B
using somatic cells (A) and the
absence (–) or presence (+)
of EGFP protein and ARHGAP11B
mRNA expression in neocortex
(B and C) of one WT and seven
ARHGAP11B-transgenic marmoset
fetuses. (B) ARHGAP11B mRNA
in situ hybridization (top) and
EGFP immunohistochemistry
(bottom) of ARHGAP11B-non-
expressing (TG2) and ARHGAP11B-
expressing (TG6) neocortex
of marmoset fetuses. Scale bars,
500 mm.

EGFP

ARHGAP11B

WT TG1 TG2 TG3 TG4 TG5 TG6 TG7

non-expressing ARHGAP11B

A
R

H
G

A
P

11
B

E
G

F
P

A

B

EGFP
ARHGAP11B

– – – + + + + +
– – – + + + + +

WT TG1 TG2 TG3 TG4 TG5 TG6 TG7C

on N
ovem

ber 14, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


per animal (table S2). ARHGAP11B mRNA
expression in the marmoset neocortical wall
resembled that in fetal human neocortex,
with similar intensity and occurring prefer-
entially in the germinal zones [i.e., the ven-
tricular zone (VZ), inner subventricular zone
(iSVZ), and outer subventricular zone (oSVZ)
(14)] (9, 15), like EGFP, as revealed by in situ
hybridization (fig. S1E) and reverse transcrip-
tion quantitative polymerase chain reaction
(PCR) (fig. S1F).
The ARHGAP11B-expressing marmoset neo-

cortex was larger and its cortical plate (CP)
thicker than that in normal marmoset neo-
cortex (Figs. 1B and 2A and fig. S1E) and, in
contrast to the smooth surface of the normal
marmoset brain, exhibited surface folds (Fig.
2A). Quantification of fetal marmoset neo-
cortex as a whole indicated no statistically
significant difference in width but a significant
increase in length of ARHGAP11B-expressing
neocortex compared with wild-type (WT) and
ARHGAP11B-non-expressing neocortex (Fig.
2B). To quantify cortical folding, we analyzed
coronal sections of fetal marmoset neocor-
tex along the rostrocaudal axis (Fig. 2C) to
obtain the gyrification index (GI) (fig. S2A),

which is the ratio of tracing the de facto length
of the (unfolded or folded) cortical surface
(Fig. 2E, green) over a hypothetical minimal
length, i.e., smooth, tracing of the cortical
surface (Fig. 2E, magenta) (16, 17). Applying
this tracing to the entire dorsoventral dimen-
sion of the coronal sections analyzed, WT and
ARHGAP11B-non-expressing neocortex exhib-
ited a GI of nearly 1.0 (Fig. 2C), consistent with
the essentially unfolded, near-lissencephalic
nature of the marmoset neocortex (18, 19).
The GI of ARHGAP11B-expressing neocortex
increased rostrally (Fig. 2C) and reached nearly
1.1 when the tracing was confined to the por-
tion of the cortical surface where gyrus-like
structures emerged (Fig. 2D and fig. S2B).
These structures did not arise by folding of
a CP of equal thickness, but rather reflected
local CP thickening (fig. S2, C to E), which in
turn reflected a specific increase in upper-
layer neurons as revealed by immunostaining
for markers of specific neuron populations
(fig. S2, D and F).
We then quantified CP thickness in WT,

ARHGAP11B-non-expressing, and ARHGAP11B-
expressing marmoset neocortex, taking into
consideration only regions where no gyrus-

like structures emerged in the ARHGAP11B-
expressing neocortex. This revealed increased
CP thickness for ARHGAP11B-expressing neo-
cortex compared with WT and ARHGAP11B-
non-expressing neocortex (Fig. 3, A and B, and
figs. S3 and S4A).
To understand the basis of this increase in

CP thickness, we quantified CPnuclei that were
positive for Tbr1 and Ctip2, two markers of
deep-layer neurons, and CP nuclei that were
positive for Satb2 andBrn2,which are expressed
by upper-layer neurons (20, 21) (Fig. 3A and fig.
S4B).We observed a nearly 40 and 50% increase
in Satb2+ neurons and Brn2+ neurons, respec-
tively, but not inTbr1+ andCtip2+neurons, in the
CP of ARHGAP11B-expressing marmoset neo-
cortex compared with WT and ARHGAP11B-
non-expressing neocortex (Fig. 3C and fig. S4,
C and D).
Consistent with the developmental stage of

our analyses (fig. S1D), we noted that a sub-
stantial proportion of the Satb2+ and Brn2+

neurons observed in the cortical wall were
found in the subplate (fig. S5, A and B), consist-
ent with these neurons migrating to the CP
(22, 23). Accordingly, the numbers specifically
of Satb2+ and Brn2+ neurons in the subplate
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Fig. 2. Size and GI of WT and ARHGAP11B-non-expressing versus ARHGAP11B-
expressing 101-day fetal marmoset neocortex. (A) WT brain and brain
expressing ARHGAP11B in neocortex (TG3). Arrowheads indicate cortical
folds. R, rostral; C, caudal. Scale bars, 1 mm. (B) Width and length (see
diagrams) of six WT (black dots, white columns) plus two ARHGAP11B-non-
expressing neocortices (green dots, white columns) versus five ARHGAP11B-
expressing neocortices (magenta dots, gray columns). Data are shown as
mean ± SD; n.s., not significant; *P < 0.05 (two-tailed t test). (C) GI [see (E) and
fig. S2A] of three WT plus two ARHGAP11B-non-expressing neocortices (white
circles) versus five ARHGAP11B-expressing neocortices (magenta circles) at

seven positions along the rostrocaudal axis (see diagrams). Data are shown as
mean ± SD; *P < 0.05; **P < 0.01 (one-tailed t test). (D) Local GI (see fig.
S2B) of three WT neocortices (black dots, white column) plus two ARHGAP11B-
non-expressing neocortices (green dots, white column) versus five ARHGAP11B-
expressing neocortices (magenta dots, gray column). Data are shown as mean ± SD;
***P < 0.001 (two-tailed t test). (E) 4′,6-diamidino-2-phenylindole (DAPI)–stained
coronal section of WT and ARHGAP11B-expressing (TG4) neocortex at position 3
[see (C)]. D, dorsal; V, ventral. Green line indicates the de facto length of the cortical
surface; magenta line indicates the hypothetical minimal length of the cortical
surface. Scale bars, 500 mm.
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were greater, but the subplate thickness was
equal, forARHGAP11B-expressingmarmosetneo-
cortex comparedwithWT andARHGAP11B-non-
expressing neocortex (fig. S5, C to F).
These data were consistent with an ongoing

production of cortical neurons, mostly upper-
layer neurons, at the developmental stage of our
analyses (fig. S1D). We examined the germinal
zones (VZ, iSVZ, and oSVZ) and progenitors
therein for WT, ARHGAP11B-non-expressing,
and ARHGAP11B-expressingmarmoset neocortex
(Fig. 4A). Analysis of the germinal zones showed
increased oSVZ thickness for ARHGAP11B-
expressing neocortex compared with WT and
ARHGAP11B-non-expressing neocortex (Fig. 4B
and fig. S7A). We observed an increase in mi-
totic basal progenitors that overall was ≈2-fold
in the iSVZ and ≈3-fold in the oSVZ, but ob-
served no difference in mitotic apical progen-

itors in the VZ (Fig. 4C and figs. S6 and S7,
B and C).
At least half of the mitotic basal progenitors

in the oSVZ of ARHGAP11B-expressing neo-
cortex exhibited a basal process and thus were
basal (or outer) radial glia (24–27), whereas
this proportion was less (≤40%) for WT and
ARHGAP11B-non-expressing neocortex (Fig.
4D and figs. S8, A toD), which is consistentwith
previous data (28, 29). ARHGAP11B expression
increasedmitotic basal radial glia ≈3-fold (Fig.
4E and fig. S8E). A significant increase in basal
radial glia caused by ARHGAP11B expression
was also observedwhen these cells were quan-
tified in interphase using the marker Hopx (6)
(fig. S9). More than 99% of the mitotic basal
radial glia in oSVZ were Sox2+ (fig. S8F) and
about half lacked expression of Tbr2 (Fig. 4, D
and E, and fig. S8G). Therefore, the cells am-

plified upon ARHGAP11B expression in fetal
marmoset neocortex exhibited a marker signa-
ture consistent with the identity of basal radial
glia (5, 6, 9).
In this study, we examined physiologically rel-

evant expression of human-specific ARHGAP11B
(7, 8) in the fetal neocortex of a nonhuman pri-
mate, the common marmoset, by using the
human ARHGAP11B promoter, in contrast to
previous studies using a strong constitutive
promoter (9, 10). This expression increased
fetal neocortex size, CP thickness, upper-layer
neurons, oSVZ size, and basal progenitors—
including basal radial glia, the progenitor type
that is thought to drive development of the
mammalian neocortex (2–6, 14, 30). Our results
suggest that the human-specific ARHGAP11B
gene may have caused neocortex expansion in
the course of human evolution.
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Fig. 3. ARHGAP11B-expressing 101-day fetal marmoset neocortex shows
increased CP thickness and elevated numbers specifically of upper-
layer neurons. (A) Triple immunofluorescence for Tbr1 (yellow), Ctip2
(magenta), and Satb2 (green) combined with DAPI staining (white), of WT
(left) and an ARHGAP11B-expressing (TG3, right) neocortex (occipital lobe).
Scale bars, 50 mm. (B and C) CP thickness (B) and Tbr1+, Ctip2+ Satb2+, and

Brn2+ neuron number in CP in a 200-mm-wide field (C) of three WT neocortices
(black dots, white columns) plus two ARHGAP11B-non-expressing
neocortices (green dots, white columns) versus five ARHGAP11B-expressing
neocortices (magenta dots, gray columns). For ARHGAP11B-expressing
neocortex, quantification excluded gyrus. Data are shown as mean ± SD;
**P < 0.01; ***P < 0.001 (two-tailed t test).
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Fig. 4. ARHGAP11B-expressing 101-day fetal marmoset neocortex shows increased oSVZ thickness and
elevated numbers of basal progenitors, notably basal radial glia. (A) Immunofluorescence for phosphohistone
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neocortex (occipital lobe). Scale bars, 50 mm. (B and C) Germinal zone thickness (B) and PH3+ cell numbers in
germinal zones in a 200-mm-wide field (C) of three WT neocortices (black dots, white columns) plus two ARHGAP11B-
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dots, gray columns). Data are shown as mean ± SD; *P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed t test).
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 geneARHGAP11B analyzed the effects of et al.found in humans but not nonhuman primates or other mammals. Heide 
Along the path of human evolution, gene duplication and divergence produced a protein, ARHGAP11B, that is

Neocortex in the fetal brain
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